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Abstract--A theoretical and experimental investigation of laminar convective heat transfer over a 
sinusoidal-shaped rotating disk with a constant wall heat flux condition is presented. The theory is based 
upon the boundary-layer approach. The results show the effects of roughness on the local and average 
Nusselt numbers. Theoretical wall temperatures are obtained from a simple thermal balance and compared 
with the experimental ones measured by means of an infra-red thermography technique for the case of air 

(Pr = 0.7). 

1. INTRODUCTION 

IN TH~ BULK of theoretical studies about convective 
heat transfer, the calculation procedure of  the local 
and average Nusselt numbers is facilitated by the 
assumption that the exchange surfaces are smooth. 
However, from an engineering point of  view, the sur- 
faces are rough and the wall roughness acts on the 
heat transfer coefficient. This phenomenon has been 
the subject of  several experimental works because of  
its applications in many industrial processes such as 
heat exchangers, active sites in boiling processes, etc. 
[1-5]. All these studies treat laminar or turbulent flows 
over plates and duct flows. 

From a theoretical standpoint, only a few studies 
have been reported in the literature and this is prob- 
ably due to the difficulties encountered in describing 
the geometry of  rough profiles. However, they can be 
modelled by a periodic distribution of  the surface 
irregularities. In this way, the special case of sinu- 
soidal-shaped areas is interesting to study and a num- 
ber of  papers about laminar heat transfer over sinu- 
soidal plates for both forced [6, 7] and free [8] 
convection have been presented recently. On the other 
hand and to the best knowledge of  the authors, the 
case of  rough rotating bodies of  revolution has not 
been investigated: this is the subject of  this paper 
in which a theoretical and experimental analysis of  
laminar heat transfer over a rotating rough disk is 
presented. The roughness is modelled with sinusoids 
which are concentric with respect to the axis of  
rotation and the theory is limited to the case of  small 
amplitude/wavelength ratio (ao/2 ~< 0.2). The results 
are compared with those of  the well-known isothermal 
flat disk problem [9-12] which appears as a limiting 
case of  the present study. This theory has been vali- 
dated with measurements of  the wall temperatures 
for the case of  air, using an infra-red thermography 
technique. 

2. THEORETICAL ANALYSIS 

Consider (Fig. I) a sinusoidal-shaped disk with 
radius L which rotates with angular velocity co in a 
newtonian fluid at rest. The physical properties of  the 
fluid are constant and its temperature far from the 
wall is T®. We choose an orthogonal curvilinear co- 
ordinate system with x measuring the distance from 
the axis, along the surface curvature, y and 0 being, 
respectively, the normal distance from the wall and the 
azimuthal direction. From laminar boundary-layer 
theory, the governing equations for axisymmetric flow 
are: 

continuity 

momentum 

energy 

aVx OVy + Vx dr 
0----~- + -~--y --~- ~xx = 0; (I) 

V~ oV~ V ~V~ V~ dr a2V~ 
-~-x + Y~y r dx - -v  t~y 2 (2) 

vat,, ~_~ V,V, dr a2V,. 
-~--x + v "  + r ~ = v  ay ~ , (3) 

aT aT a2T 
V. x + v, yy = aa- 7 (4) 

where V,, Vy and Ve are the velocity components 
corresponding to the x, y and 0 directions; r is the 
normal distance from the axis of rotation; a and v are, 
respectively, the thermal diffusivity and the kinematic 
viscosity of the fluid, the temperature of which is 
T in the boundary layer. For a flat rotating disk, 
the boundary-layer thickness 6 is approximated as 
6 ~ (v/co) u2. In this study, the wavelength 2 is the 
characteristic length so that equations are valid only 
if (A2co/v) u2 >> I. The boundary conditions associated 
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NOMENCLATURE 

a thermal diffusivity of the fluid 
[In 2 s- I1 

a0 amplitude of the sinusoidal profile [m] 
Cr specific heat of air [J kg- t s- '] 
f (8, ~l), g(e, ~l) dimensionless stream 

functions 
h local convective heat transfer coefficient 

[Wm-2K-I] 
go gravitational acceleration [In s- 2] 
Gr Grashof number, ~rg0(T, -  T=))-3/v 2 
k thermal conductivity of the fluid 

[Wm-I K - '  ] 
L radius of the disk [m] 
Nu local Nnsselt number, h~/k 

average Nusselt number related to the 
real surface of the disk 
average Nusselt number related to the 
surface of the smooth disk, nL 2 

Pr Prandtl number, laCe/k 
Q incident heat flux [W m- 2] 
q wall heat balance [W m-2] 
r radial distance from the axis [m] v 
R dimensionless radial distance from the 

axis 
Re~, Reynolds number, ~=oJ/v 
Ri Richardson number, Gr/ Re 2. 
S real surface area of the disk [m2] 

T temperature of the fluid in the boundary 
layer [K] 

T.m average maximum temperature of the 
disk El 

T® temperature of the fluid far from the wall 
El 

T. wall temperature [KI 
V~, V.V.  velocity components [m s- i] 
x, y, z orthogonal curvilinear coordinates 

(Fig. !) [m]. 

Greek symbols 
a ,  8, absorptivity and emissivity of the surface 
/~ angle defined in Fig. 1 [rad] 
fir coefficient of thermal expansion [K- i] 
~, t/ dimensionless coordinates 
0r dimensionless temperature 
Or, wall dimensionless temperature 
,l wavelength of the sinusoidal profile [m] 
# dynamic viscosity of the fluid 

[kg m-I s- '] 
kinematic viscosity of the fluid 
[m2s -I1 
Stefan-Boltzmann constant 
[Wm-2K -4] 

qb(x, y), ~,(x, y) stream functions [m 2 s- i] 
to angular velocity of the disk [rad s- i]. 

with the differential system (I)-(4) are written by 
introducing the wall heat flux q : 

fory = O: V~ = Vy = Vo-rco = 0 1 

k OT I (5) -- ~ y = q  

f o r y ~ o o :  V ~ 0 ,  Vo--,0, T-,T® 

!: : - -  

• O" I Y • • 

I t  o 

Fzo. 1. Problem statement and definition of  the coordinates 
and definition of the parameters used for the calculation of 

the eervilinear abscissa. 

Equations (1)-(4) subjected to the boundary con- 
ditions (5) are solved by introducing the following 
non-dimensional coordinate system: 

) 
~-- ~ Y 

where R is the ratio rlA. We also define the dimension- 
less stream functions f(8, ~) and g(e, ~) as 

f(~'rl) ~l k VS / ~ r  
(7) 

g ( 8 , ~ )  ~l k VS / cor . 

where ~,(x, y) and ~b(x, y) are the stream functions 
which are related to the velocity components by 

I a ~ ( x , y ) r  
r ay 

10¢(x, y)r 
V,= r Ox 

a~(x,y) 
vo= 0y 

(8) 
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Finally, we introduce a dimensionless temperature 
0r(~, ~) 

o~(~,.) (r- r®)k (,oR]"" 
= ~ k-~- /  (9) 

with k being the thermal conductivity of the fluid. It 
can be shown that substituting relations (8) and (9) 
into equations (I)-(4) and boundary conditions (5) 
and using definitions (6) and (7) leads to the following 
differential system: 

,. 8 dR ,2 ,z 
f - ~ - d - ~ ( f  - g  ) 

+ 2R"~e) ff= ~(f'~-~ --f"~O (10) 

. f l  3edR'~ 

pr- I O'~.+ 

hda.,, /,aa' .OA -~-~:g =,~f  ~ - -g  ~) (II) 

/,oo, oA 

(12) 

with 

f o r ~ = 0 :  f = g = f ' = O ,  g ' = l ,  0~-------1 

fo r~ /~oo :  f ' ~ O ,  g'--,O, Or"*O. 
(13) 

In the above equations Pr is the Prandtl number and 
the 'primes' denote differentiation with respect to ~. 
The boundary conditions with respect to 8 are 
obtained by solving equations (10)-(13) at the axis 
where all derivatives 0/08 vanish because of  the sym- 
metry ofvelocity and temperature profiles with respect 
to the axis of  rotation. With ? denoting the limiting 
value of 8/R" dR~de as e ~ 0, these conditions are: 

f o r t  = 0 

,- ,2 ,2 ./I _ 3h 
f - 7 ( f  -g ) + f f  ~+~7)=o 

+ ~Y)g"f-  7g:f = 0 (14) 

Pr- ' 0'~.+ +~y fo r  ffi 0 

subjected to the boundary conditions (13). 

2.1. Calculation of the curvilinear abscissa x 
Consider the studied profile drawn in Fig. 1 with 1 

being the normal distance fi'om a point of  the surface 
to the axis Oz. As explained above, x is the curvilinear 
distance and r is the radial distance from the axis of  
rotation (r - z). We have 

F 2nzl  
= = 2a0 sin -~ (15) i aoLl-cosT_ ] "=  

which gives 

j(  ,,,z, 
dx= I- ~sln --~-) dz. (16) 

The distance x can thus be expressed as an elliptic 
integral of the second type [13] 

x f K  1 - r ' s i n '  ---z-+=ndz (17) 

with 

By setting 

K= I+  ~2 ][.. 

} 

we find 

2Kz = 

r = - T +  ~ 

K;. [" x/(l_K, sin ~ Y)dY. 

(18) 

From equations (16) and (19) it is now easy to cal- 
culate numerically e and dR~de, which is identical to 
~/ax. 

2.2. Calculation of the Nusselt number 
The non-dimensional wall temperature 0 is one of  

the physically interesting functions because it is 
related to the local Nusselt number, Nu, which is 
defined in this study as 

hA 
Nu = T (20) 

where h is the local heat transfer coefficient which can 
be expressed from the wall heat flux q as 

h =  q T.  - T= (21) 

T.  being the wall temperature. From equations (5), 
(6) and (9), we obtain 

Nu Re[ ,/2 = (22) 
<~] 0~." 

Re., is the Reynolds number for which the definition 
is 

col 2 
Re, = (23) 

V 

Integrating equation (22) yields the average Nusselt 
number Nu 

(19) 
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N'uRe='/2ffilfsNuRe=l/=d$ (24) 

where S is the area of  the disk. In order to quantify 
the effect of  roughness on heat transfer, it is also 
convenient to introduce the area (~L 2) as a reference. 
The corresponding average Nusselt number is 

$ 
Nu,,, = Nu nL 2. (25) 

For a smooth disk, it is clear that Nuj, becomes identi- 
cal to Nu. 

3. THEORETICAL RESULTS 

Equations (I0)-(12) and boundary conditions (13) 
have been discretized with a simple implicit finite 
difference scheme, similar to that used by Keller and 
Cebeci [14, Ib']. For boundary-layer problems, this 
procedure is much faster than most other numerical 
methods and it enables us to compute very close to 
the point of flow separation. This last point is one of 
the disadvantages ofclassical methods such as G6rtler 
expansions, see for example ref. [16]. The resulting 
non-linear system of equations has been solved by the 
Newton method with a block tridiagonal factorization 
technique [17]. 

The variations of  the local Nusselt number depend 
on the amplitude/wavelength ratio a0/g. This is shown 
in Fig. 2 where the non-dimensional parameter 
Nu Re= v2 has been plotted against the radial distance 
from the axis o f  rotation for several values of  a t ) .  (0, 
1/16, I/8 and 1/5) and for Pr ffi 0.7 (air). We first note 
that the thermal profile is a periodic function with a 
double periodicity as compared to that of  the geo- 
metrical profile. It should be emphasized that these 
results were obtained by specifying a uniform wall 
heat flux, so that the radial variation of  wall tem- 
perature together with the shape of  the disk affect the 
local Nusselt number: the variation of  wall tem- 
perature has a significant effect on the heat transfer 
from a flat rotating disk [10-12]. 

The double periodicity results from the change in 
the sign of  d2R/d8 = at the points rig~4 (n is an integer) : 

a ~  

I I I I 
0 0,05 0.1 0.15 0.2 

oo/x 

FIG. 3. Variation of the average Nusselt numbers ~ (curve 
1) and Nut (curve 2) vs the amplitude/wavelength ratio. 

Pr ffi 0.7, L ffi 0.02 m, J. -- 0.01 m. 

this change affects the value of  the wall velocity gradi- 
ents with an accompanying effect on the local heat 
transfer coefficient. However, the position of  the 
maximum and minimum values departs from the 
points n2/4 because the centrifugal forces influence 
the hydrodynamic and thermal boundary-layer thick- 
nesses. We also note a decrease in the amplitudes of  
the profiles as the distance from the axis of  rotation 
becomes greater. The maximum value of  the local 
Nusselt number is observed at the axis where the 
thickness of  the boundary layer, ,~, is minimum, 
because of the curvature of  the geometrical profile: 
the variation of  <~ as 8 increases can be seen from 
equation (6), which shows that ~ is proportional to 
(v/co)'/2(e/R)'/2. For a fiat rotating disk, e is identical 
to R so that <~ is uniform and proportional to (v/co)'/~. 
For the rough disk, <$ is proportional to (v/co)'/2 only 
at 8 ffi 0 because e/R is then equal to 1. For 8 > 0, 6 
increases with increasing values of  (e/R) m/2. Finally, it 
should be noted that no secondary flow due to the 
concave surface occurs, which is probably the conse- 
quence of  the assumption that ao/2 << 1. 

Figure 3 shows the variation of  the average Nusselt 
number N'u Re= ,/2 as a function of  the ratio ao/~ 
(curve 1). It is observed that Nu decreases as ao/). 
increases. However, as explained above, a rough sur- 
face must be defined with the area of  the smooth disk 
as a reference. We then observe (curve 2) that the 
corresponding values of  the average Nusselt number, 

o.36 

0.34 

I eol)L.111e 
2 e o / ) , . l i e  

30o1~.115 

T a  0.32 , _ 

2 

a ~  3 

a 2 6  
I i I  [ I I I i I I I i I 

0 X / 2  ), 3 ) , /2  2), 5 X / 2  3~ 

Fxo. 2. Yariation of the local Nusselt number vs the normal distance from the axis of rotation for several 
values of amplitude/wavelength ratio. Pr ffi 0.7, L = 0.03 m. 
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0.345 
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1 2 3 4 5 6 7 8 

N 
FIG. 4. Variation of the average Nusselt number Nut vs the 
number of sinusoids encountered on the disk area. Pr ffi 0.7, 

ao/1 = 0.125, L = 0.02 m, i = 0.01 m. 

Nup, increase as the ratio ao/1 increases. For  
a0/i = 0.2, this value is about 15% greater than the 
one obtained for ao = 0 and 11. = L. 

Because of  the variation of  the thermal boundary- 
layer thickness as the radial distance becomes greater, 
the value of  Nue Re: ~/2 is evidently related to the 
number of cycles N which are encountered in the 
range 0 ~< r ~< L. This influence appears in Fig. 4: the 
average Nusselt number is seen slowly increasing from 
N = 1 to 8. For  N > 8 its value becomes constant. 

Finally, it is noted in Fig. 5 that the influence of  the 
ratio ao/1 on the average heat transfer coefficient is 
also related to the nature of  the fluid. In this figure, 
we have given Nue Re: ~/2 against the Prandtl number 
for three values ofao]i .  The roughness effects are seen 
to slowly increase with an increasing Prandtl number. 

4. CALCULATION OF THE LOCAL WALL 
TEMPERATURE 

In order to compare the theoretical results with 
experimental data, we must now deduce the wall tem- 
peratures from the heat flux condition (5). Because 
the experiments were performed with air in a relatively 
small enclosure (see the next section), we first assume 
that the radiation transmission factor of  the fluid is 
unity. The heat flux q which appears in the boundary 
conditions (5) can thus be made explicit as 

~-8,~F2E(Tw - T®) (26) q = Fl2~,Qcos 4 4 

where F, ~ is the view factor between a radiative heat 
source with density Q (subscript 1) and the sinusoidal 
area (subscript 2). F2E is the view factor between the 
disk and all other surfaces which enclose the exper- 
imental apparatus. The surfaces are assumed to be at 
the fluid temperature far from the disk, T=. 

We can write 

F2, +F22 +F2E ffi 1 (27) 

where F22 is the view factor between the different 
facing parts of  the disk surface. We now assume that 
F ~  << F2E, which is in agreement with the low 
amplitude/wavelength ratio hypothesis. Moreover, 
the direction of  incident heat source radiations is par- 
allel to the axis of rotation, which is experimentally 
possible if the distance D between the source and the 
disk is relatively high in comparison with the radius 
L. We can thus write that F21 ~- 0, so that equation 
(27) simplifies to F2~ ~ 1. It should be noted that the 
configuration factor F~2 depends on the position x(8). 
However, in accordance with the conditions ao/1 << 1 
and LID << 1, F ~  has been considered as a constant 
in the calculations. 

The other quantities which appear in equation (26) 
are a, and 8, the absorptivity and emissivity of  the 
disk surface. (As the surface has been covered with 
black paint, then a, -- 8, for the infra-red wavelength 
range.) In addition ~ is the Stefan-Boltzmann con- 
stant and fi is the angle defined in Fig. 1. 

With the above assumptions, the wall condition can 
be written as 

- k  OT ffi q = F , : ( , Q  cos/~ 
0Y y-0 

--8,~(T:--T~). (28) 

Figure 6 shows a typical wall temperature profile 
(curve 2) deduced from the thermal balance (28). 
Curve 1 represents the geometrical profile. For this 
exampk, the ratio ao/1 is 0.2 which is the maximum 
value tested. "Ihc other quantities are L = 0.03 m, 
i = 0.01 m and Re,~ = 250. The figure shows the 

I o0/)," 1/16 ~3 
0.9 2 o0/X.1/8 ~ 2  
Q8 " ~  

~ 0.7 

3 0.6 

0.4 

~3 I I I I 
0 1 2 3 4 

Pr 
FiG. 5. Variation of the average Nusselt number Nup vs the Prandtl number for several values of the 

amplitude/wavelength ratio. L = 0.03 m, 1 -- 0.01 m. 
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0 A/2 A 3A/2 21 s/2 3x 

x 

FIG. 6. Wall temperature profile vs the noknal distance 
from the axis of rotation. Pr = 0.7, L = 0.03 m, Re, = 250. 

adl = 0.2, T, =20°C,Q=78500Wm-2. 

double periodicity of the temperature profile in com- 
parison with the geometrical one. The minimum and 
maximum temperatures are obtained for the points 
which are located at nA/4 and 42, respectively (n is 
an integer). This appears to contradict the results 
shown in Fig. 3 where the maximum local Nusselt 
numbers are obtained for n1/2. However, it should 
not be forgotten that the direction of the incident 
radiative heat flux is parallel to the axis of rotation so 
that the absorbed energy is greater for these points. 
We also note that the wall temperature at the axis of 
rotation is smaller than those which are obtained for 
the points located at n1/2 (with n # 0), although the 
incident energy is the same. This is in agreement with 
Fig. 3, which shows that the convective heat transfer 
coefficient is higher at the axis. 

Figure 7 shows the effect of the rotation velocity on 
the distribution of wall temperatures. The temper- 
atures have been plotted against z for so/l = l/6. The 
cooling of the surface is better as the angular velocity 
increases and the profile amplitude is seen to decrease. 

5. EXPERIMENTAL STUDY 

5.1. Experimental procedure 
The analysis of heat transfer from a rotating rough 

disk has been carried out using the experimental sys- 

25 

t 

0 A12 A 3v2 2A SAP2 3A 

z 

FIG. 7. Influence of the Reynolds number on the temperature 
protile. Pr = 0.7, L = 0.03 m, a,JA = 0.167, T, = 20°C 

Q = 78500 Wm-‘. 

tern shown in Fig. 8 [18, 191. This apparatus has five 
components. 

(i) A thermographic infra-red camera (Infra- 
metrics, model 525), the main specifications of which 
are : 

temperature measurement range : - 20°C to 1500°C 
resolution of temperature measurements : 0.2”C 
spectral range : 8-12 pm 
detector : Hg Cd Te 
detector coolant : liquid nitrogen. 

(ii) A microcomputer for collection and treatment 
of data. 

(iii) A cylindrical heater element with thermo-regu- 
lation. The infra-red camera is placed behind this 
hollow cylinder, the inner diameter and length of 
which are 7 and 10 cm, respectively. 

(iv) An electric motor with chuck for the fixing and 
rotation of disks at a regulated angular speed. The 
disks rotate about a horizontal axis and their diameter 
is 6 cm. The disk material is ‘nylon 6’ and their surface 
is covered with black paint. 

(v) A black body reference source. 

Before collecting data, the preliminary control 
of heating uniformity on the surface of the disk and 
the verification of the steady state conditions are 
necessary. 

In order to create a uniform radiant heat source for 
the disk, the axis of the heater and the axis of rotation 
are put in a line. Moreover, the distance between the 
heater and the disk is large (about 30 cm) compared 
to their diameter, so that the direction of the radiative 
heat flux can be considered parallel with the axis of 
rotation. The uniformity of the radiant heat source 
has been verified by observing the temperature of the 
surface for a rotating flat disk: according to theory 
and previous published experimental results, an iso- 
thermal surface was found. 

Verification of steady state conditions was per- 
formed during each experiment by the process of data 
acquisition. A sequential data processor carried out 
the storage of thermal information (thermogram) at 
regular time steps (approximately 0.25 s). An example 
of a thermogram is shown in Fig. 9(a). The software 
allows the selection of a line from this thermogram 
and the corresponding thermal profile is calculated 
(Fig. 9(b)). Another function of the software com- 
putes a three-dimensional representation (256 lines x 
256 columns x 64 levels) of temperature in relation to 
time. The steady state conditions arc obtained when 
each successive thermal profile stays identical during 
acquisition (about 10 min). 

Finally, it is important to remember that the theor- 
etical study is based on the hypothesis of a ratio a,,/1 
less than 0.2. This enables us to assume as a first 
approximation that the view factor between the con- 
cave surface of the sinusoid and surroundings is the 
same as the one between the convex surface of the 
sinusoid and surroundings. This hypothesis is even 
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Ther mocoupte 

c u r r e n t  
motor 

I Speed 
con t ro l  

22ov  supply 
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Therrnocomere 

FIG. 8. System layout. 

Computer 
/Lp 80286 
RAM 640  KO 
Hord disk 30 MB 
FLoppy disk unit 1.2 MB 
AnoLog/digitoL converter 
Buffer memory 64 KB 
Grophics cord 
Grophic screen 

Pr i n t e r  I 
Copy of screen 

less valid when the ratio ad2  increases, as shown in 
Fig. 9, for which experiments were performed with 
ao/2 = 0.375. Indeed, the view factor between the 
different facing parts of  the surface (F22) cannot be 
neglected and the cooling of  the convex parts becomes 
more instense than the concave ones : there is a higher 
temperature for the troughs than for the peaks. 

5.2. Experimental results 
Figure l0 shows the qualitative results obtained for 

ao/2 = 0.125. Measurements in the range 52/2 < 

ThermogrOm 

"rherrnoL profRe 

GeornetricoL profile 
oo/X - 0.37'5 

I 
i 

Axis 

< .  J , )  • • , , • 

t 

FiG. 9. Thermogram (a), thermal profile (b) and geometrical 
profile (c) for ao/2 > 0.2 (a0/2 = 0.375). 

r < 3,;. have been omitted in this figure because they 
are highly affected by the edge effects. 

By comparing this figure with the thermal profile 
shown in Fig. 6, we note that the theoretical pre- 
dictions agree with experimental observations: first of  
all, the periodicity of the thermal profile is doubled as 
compared with the geometrical one. Secondly, the 
temperature of  peaks and troughs correspond to the 
maximum temperatures of the thermal profile and 
their values are identical on average. Lastly, we can 
see that the temperature of the middle peak is less 
significant than that of the other peaks, confirming 
the theoretical analysis developed in the preceding 
paragraphs. 

In order to give some quantitative comparisons of 
results, we have shown in Fig. I l the temperature 
range A T between the average maximum temperature 
(Tm~) and the average minimum temperature of  the 
thermal profile as a function of  (Tm~- 7"=). It should 
be noted that the temperature of the middle peak is 
omitted for the calculation of Tma, which can be 
varied by modifying either the incident flux or the 
rotation speed. We note a good agreement between 
the theoretical predictions (curve a) and experimental 
measurements for the values themselves, as well as 
for the slope of the straight line. The corresponding 
experimental profiles are given in Fig. 12: this series 
of experiments was carded out by modifying the inten- 
sity of  the radiant heat source. 

For the study of the rotating speed (the incident 
flux being fixed) the current system prevents us from 
showing the effects clearly, as the maximum rotational 
speed is 3000 revolutions per minute, which cor- 
responds on average to a Richardson number of  
approximately 0.1 when the range (7" , -  T~) is about 
10°C. In this study, the Richardson number, Ri, is 
defined as 

Gr 
Ri = Reg (29) 

where Gr is the Grashof number 

goflr( r. -- T~);. 3 
Gr = v2 (30) 
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FIG. 10. Thermogram (a), thermal profile (b) and geometrical profile (c) for ao/A = 0.125. 

According to a recent study [20], Ri = 0.1 is the 
limit above which the natural convection cannot be 
neglected for these types of  flow. A speed less than 
2000 revolutions per minute would therefore cor- 
respond to the mixed convection regime, which is not 
included in the context of  this study. 

6. CONCLUSIONS 

We have presented a theoretical and experimental 
study of  forced laminar convection, generated by the 

rotation of a disk, the surface of which is characterized 
by sinusoidal waves. The theoretical analysis, based 
on the boundary-layer equations, is justified both on 
qualitative and quantitative grounds by measure- 
ments of  surface temperatures carried out by infra- 
red thermography. The results exhibit the doubled 
periodicity of the thermal profile in comparison with 
the geometrical profile. They also illustrate the link 
existing between the increase of  the Nusselt number 
and roughness. However, as explained above, this 
increase is also due to the oscillatory wall temperature 
of the rough disk. 
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Fro. 11. Variation o f  AT as a function o f  ( T ~ x -  T®). Curve a, theory; + ,  experimental values. 
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FIG. 12. Thermal profiles corresponding to the experimental values of Fig. 11. 
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ETUDE DU TRANSFERT DE CHALEUR LAMINAIRE SUR UN DISQUE TOURNANT 
AFFECTE D'ONDULATIONS SINUSOIDALES 

R ~ a m ~ - O n  ~tudie th~oriquement et exl~rimentalement le transfert de chaleur laminaire sur un disque 
toumant affect~ d'ondulations sinusoidales et soumis i un flux parietal constant. La th~orie est bas~e sur 
l'approximafion de la couche fimit=. Les r~sultats mett=nt en ~vidence i'influence de la rugosit~ sur les 
nombres de Nusselt local et moyen. Les t=mp~ratures de surface sont obt=nues ~ l'aide d'un bilan thermique 

la paroi et sont compar&'s anx t=mp~ratures exp~rimentales mesur&s, dans le cas de l'air, par thermo- 
graphie infrarouge. 
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UNTERSUCHUNG DES LAMINAREN W~RME~BERGANGS AN EINER 
SINUSF(~RMIGEN ROTIERENDEN SCHEIBE 

Zusammenfauung--Eine theoretische und experimenteile Untersuchung tier laminaren Konvektion an 
einer sinusf6rmigen rotierenden Scheibe mit konstanter Wirmestromdichte an der Oberfliche wird vor- 
gestellt. Die Theorie basiert auf einem Grenzschichtansatz. Die Ergebnisse zeigen den EinfluB der Rauhig- 
keit auf die 6rtliche und mittlere Nusselt-Zahl. Die theoretisch ermittelten Wandtemperaturen werden aus 
einer einfachen Energiebilanz erhalten und mit den experimentell gemessenen Werten verglichen. Letztere 

werden ffir Luft ( P r  ffi 0,7) mit Hilfe der Infrarot-Thermografie bestimmt. 

HCCJIE~[OBAHHE TEI'LrIOHEPF_J-IOCA HPH XIAMHHAPHOM TEqEHHH HA~ 
BPAIILAIOIHHMCJi ~ I C K O M  CHHFCOH]IAYlbHO~ @OPMlbl 

AmNrrlmm--Teopcrw~eczH x 3Kcnepm~ewra~sHO Hccne~yvrcf KOHBewrHSHStil ~nnonepeHoc npH 
JIaMHHapHOM TeqeHHH Ha~ Bpam~olRMc~ ~HCEOM CHHyCoH~a~bHOI] cI)opMH H HOCTOIHHOM TerLqOBOM 
nOTOEC Ha ~wcHlce. Teop~Lq o c H o n a s a  Ha npH6mnzeH~ norpaHHqHoro  colo~. Pe3yJlbTari~ noEa3sanaioT 
Ik)1HNHHe nl~'DOXOIk~TOCTB Ha Y/Ol~.ql~/lHe H ~ / X H ~  3HRqeHHI qHCJIR Hycce~ra.  Te~meparypM ¢ r e m m  
Teoper~ec~  pa~-.m-r~R~rcx sa oc~o~ Tennosoro 6a~asca x cpansmuucrc~ c 3[cnepHMcn'ra.n~- 

nama~M~ Ilo.~pleHla~,~ Me'FOJIOM H H O ~ O n  TepMorpaOHn ~ Bo3~txa ( P r  ~ 0,7). 


